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. ABSTRACT

- hs note presents a brute force approach to linearly constrained programming
in non-convex optimization; ur aim here is to illustrate a general methodology
which can be applied to construct tailor-made algorithms in specific applicatinns.

In essence, the facial decom,)osition method constructs a non-redundant list
of all faces of the polyhedral set P C Rn . Each face is characterized by a
linear program in a given affine subspace of Rn. This list is conveniently
displayed in a ttee structure which represents the set of nodes to be searched
(typically for optimality).
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ABS IRACT

This note presents a brute force approach to linearly

constrained programming in non-convex optimization; our aim

here is to illustrate a general methodology which can be

applied to construct tailor-made algorithms in specific

applications.

In essence, the facial decomposition method constructs

a non-redundant list of all faces of the polyhedral set

P CEach face is characterized by a linear program in a

given affine subspace of Rn . This list is conveniently dis-

played in a tree structure which represents the set of nodes to

be searched (typically for optimality).
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The Facial Decoosition Method

by Claude-Alain Burdet

0) Generalities

This note presents a brute force approach to linearly constrained

programming which has proved successful in non-convex optimization for

problems of moderate size; our aim here is to illustrate a general meth-

odology which (like the branch and bound idea, for instance) can be applied

to construct tailor-made algorithms in specific applications.

In essence, the facial decomposition method constructs a non-redundant

list of all the k-dimensional (0 < k < n) faces of the polyhedral set

P 1,n [1]. Each face is characterized by a linear program in a given

affine subspace of R n

The set of all faces of a polyhedron P is a complete lattice and)

in particular, one has the property:

A face of a face F of P is a (sub)face of P ; thus,

the set inclusion induces a finite tree structure on the set

of all feasible solutions (i.e., P ), each node correspond-

ing to a face of P

A method is presented in [1] to generate a non-redundant list of

linear programs, each belonging to a face of P . This list is conveni-

ently displayed in a tree structure which represents the set of nodes to

be searched (typically for optimality); this constitutes

the face decomposition method.

Unlike branch and bound which is a two criterion (feasibility and

optimality) search, the facial decomposition method represents a one

r .. N'. .



2.

criterion tree search approach where feasibility with respect to P is

automatically satisfied.

In practice the face structure of a polyhedron is an elusive concept

because it may be radically altered by the influence of numerical errors;

typically numerical perturbations due to the finite accuracy of the con-

putations will introduce a multitude of additional "faces" whenever degen-

eracy occurs. A similar phenomenon may also be present due to inaccuracy
of the original data. In order to remedy this situation, the facial

decomposition approach makes use of three cotcepts: relevant, pseudo-

degenerate, and redundant inequalities.

In fact this trichotomy introduces a control parameter which can be

used to limit the size of the tree; one may in this manner guide the

search within a subtree towards rapidly finding a Rood oution. In a

second effort, global optimality can be attained by searching the rest

of the tree.

Applications of the facial decomposition method are found in (opti-

mization) problems of various types; in order to be decomposed a problem

must possess the following property TT

The relative interior rel int F of an arbitrary

face F of P can always be fathomed (i.e., discarded

from further consideration).

For instance in concave, and in zero-one programming, it is known a priori

that the optimal solution is an extreme point of P and therefore not

interior to any face. Another application for quadratic programming is

presented in [2].
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1) Minimal sets

The idea behind the construction of facial decompositiorm is quite

simple; it rests on the fact that a linear program with variables

Xl,.o°,x n > 0 (including slacks) may contain redundant, degenerate, and

relevant variables.

Let Ax = b , x>0 ()

characterize the linear program;

+

Definition 1: The variable x1  is called redundant if A > a > 0

with A = min x subject to Ax = b x > 0,V e J

where the set J is chosen to satisfy J C N .... i J. (2)

Definition 2: The variable xi is called pseudo-degenerate if

<A <at , with C> 0

Definition 3: The variable x. is called relevant otherwise,

ie. if A < a, < 0
Remarks: e

1) Definitions 1, 2 and 3 are critically dependent on the set J C N ,

and one should speak of relevant variables with respect to J , for

instance.

2) if we assume the arithmetic to be exact, one may set a i £ = 0 *

3) The partition of the set N into three complementary cubsets Irdundat'

Ipseudo-degenerate' Irelevant ) is not unique; this is not a burden,

however, because the facial decomposition merely requires the existence

(and choice) of one such partition.



4. -d

Definition 4: A set I c N is called minimal if one has

(x Ax = b, x, : 0 V ieIj c: (x I Ax -b, xi >t 0 ,VicUj

and each variable x,, isl is relevant with respect to the

set (I- LiD

By definition a minimal set of non-negative variables characterizes the

same feasible region as the original L.P.; furthermore, if one assumes that V

this region is a p-dimensional (polyhedral) set P , then each minimal vari-

able x,, ieI identifies a (p-l)-dimensional facet F of P which can be

characterized by a linear program obtained from the previous one by setting

*X, = 0 ; upon determination of a minimal set for this facet F (it is a sub-

set of I ), one will identify (p-2)-dimensional subfaces of P ; and so

* on...; this process is easily seen to generate the finite set of all faces

of P in a tree-like manner. More details concerning this construction

can be found in (1].

For any face, the definition of the minimal set can be based on control

Iparameters" a7~ + which may differ from zero; this will produce smaller

minimalsets, whose size clearly depends on the numerical value of

a+and a-* For small enough values of a + and a. these parameters

will merely compensate for the numerical inaccuracy of the computations and

only those "faces" which have been "created" by numerical perturbations will

be discarded; for larger values of 0+ and/or a-, howevez, only a subset

of the actual faces of P will be generated. In fact such control parameters

introduce a choice criterion among the faces of P , since only certain

faces will be generated in the tree; the selected few, however, can be seen

to range through all dimensions and across the entire tree.
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Of course, in this case,(since not all the faces are tested, say, for

optimality ) one will, in general, merely obtain a &god (usually suboptimal)

solution. As in all search procedures there are a number of strategies at

our disposition: Typically a good solution should be rapidly delivered by

+
the algorithm (a variety of heuristic guidelines for the choice of aI

and a for each icN can be used); in a second phase, it is often desirable
i

to spend some more computing time, trying to establish global optimality, or

to improve the current best solution; this is easily accomplished in the

facial decomposition method by generating some new faces which correspond to

kvariables which have previously been classified as pseudo-degenerate, during the

preceding approximations. (This amounts in effect to lowering, the value a .

The minimal sets need not be recomputed, but merely need be extended by

adjoining to them some pseudo-degenerate variables; since all index sets are

finite, the search will eventually terminate.

It would be futile to list all possible algorithms and strategies based

on facial decomposition; the method is simple and flexible enough to lend

itself to special structures as well as to unstructured problems.

In zero-one programming, the facial decomposition approach can be seen to be

intimately related to the classical branch and bounds methods because of the

elementary constraints 0 < xi < I (the actual comparison is left to the

reader as an exercise). --

Thus the facial decomposition may be viewed as an extension towards

less structured problems. Possible domains of application in concave,

and integer programing are sketched in [1]. A detailed algorithm

for the general quadratic algorithm is presented in [2] and extended

in [33. Experimental codes seem to indicate that the approach is powerful

enough to motivate further analysis both theoretical and applied.
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2) Cuttng planes

The tree search and the size of the facial tree can be considerably

curtailed, if one introduces (at an arbitrary node) some additional

extraneous linear constraint(s); valid or enumerative cutting planes can

be used for this purpose. Enumerative cuts are conditionally valid,

in the sense that they require some additional implicit search to deter-

mine the best feasible solution which they may cut off; any of the well-

known search methods (typically branch and bound) can be used for this purpose;

thus one may define combined algorithins which mash facial decomposition and

branch and bound into one another. Here facial decompop.ition assumes the role

of a monitoring device which remedies the inherent difficulty of branch

and bound to cope with the problem of feasibility.

At first, it may seem that the introduction of new cuts renders the

structure of the feasible polyhedral set more complex by creating a host

of new faces. This is indeed the case, but the situation is automatically

taken care of by allowing only original variables (i.e., not the cut

variables) to enter minimal sets.

Definition 4': A set I c N is called minimal if one has:

(X"I A*x" b', x* > 0 , Vicl U C1 a [x'"I A~x'= b, xj >0 VieN U C)

and each variable x,, iel is relevant with respect to the

set (If-Ci) U C

where A 'x = b' represent an extension of the original

L.P, where cuts have been implemented; C is the index

set of the cut variables.

! . -----
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Hence the net effect of cutting planes is to reduce the feasible

set (and the facial tree) without introducing new nodes. The justifica-

tion of this approach is that a'lut face"lies entirely in the face

F of P corresponding to the nodefor which the cut was implemented;

therefore each point of the cut face lies either in the relative interior

of F (and according to the property T it can be discarded) or it

belongs to the relative boundary of F and it is considered explicitly

i the further ramifications of the facial tree.

i * - I i I- i - -
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3) Conclusions

We indicate that both the cutting plane and implicit search methods

can be profitably inbedded into the facial decomposition approach; this

results in a reduction ofthe size of the facial tree, without say addi-

tional oookkeeping complications. Preliminary computational experiments-

tion seems to indicate that the monitoring scheme offered by the facial

decomposition algo reduces the size of implicit search and increases the

depth and efficiency of cutting planes. The computational efficiency of j
a method of this type is not easily trahtable, because software considera-

tions Vsually play an important rcle; furthermore the success of methods
* I

in the area of non-convex mathematical programming is usually highly

"problem dependent." However the following heuristicarguments can be

put forward to validate the facial decomposition approach:

- because implicit searc is performed within a simplex (in

order to prove the validity of an enumerative cut) it usually

quite efficient.

- because a cutting p~ane can be generated in a lower dimensional

face, itqdepth (within that face) is always at least -as good

and usually better than if the cut were generated in a higher

dimensional affine space; this is particularly true Vhen

degeneracy occurs.

- because a non-relevant variable generates a whole subtree in

the full factorial design of all faces (feasible or nor) of

P , one may expect an exponential payoff in return for the

additional pivoting required by the 'construction of minimal sets.
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- when the algorithm terminites, ic does not only deliver an

optimal (or currently best) solutionbut also the necessary

elements 'for sensitivity analysis in the form of a description

of the facial structure about this solution.

The above hortative documntation could cortainly be extended in'

many other directions, especially if the intrinsic characteristics of

various applications are taken. into account. The object of this note,

however is not to claim superior numerical results but primarily to

indicate a line of research; the facial decomposition approach sems prom-

ising enough to motivate a quest for more results, particularly for large

and/or structured s stems. 1
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